
October 27, 1977 

1 Introduction 

This application addresses the continuation of research on the 
applications of artificial intelligence (AI) (1) to experimental 
molecular genetics. It is an extension of a longstanding effort to 
cultivate attention to ongoing laboratory research as a domain of 
explorations in artificial intelligence. Our major effort in this field 
had been in the DWRAI. project, with analytical organic chemistry as 
the object discipline. The present effort, "NOLGEN", focuses on a new 
object domain, namely molecular genetics. However, for reasons that 
will be elaborated, the focus is on programs to suggest experiment- 
planning sequences needed to solve a given structure, rather than on 
hypotheses about the structures themselves, which characterizes 
DENDPAL. 

Our primary motivation is to deepen o'ur knowledge of the art 
and science of creating programs that reason with symbolic knowledge to 
aid human problem solvers. The task domain--mlecular genetics--serves 
as a rich intellectual and scientific environment in which to develop 
and test our ideas. 

The major computer science issues we are addressing are: 

Present Grant period (June 1976 - June 1978) 

(1) Creation of a knowledge representation system with a 
knowledge acquisition package. The system, known as 
the Units Package, may be used to build a knowledge 
base in any suitable domain. It provides an object- 
centered approach for storage of both declarative and 
procedural information concerning all entities in the 
domain. Section 1.2.1 

(2) Structured representation of process information. 
Procedures which simulate the action of the various 
processes in the domain form an integral part of the 
knowledge base. Moreover, the representation 
frame-work allows for inspection and acquisition of 
those procedures, Section 1.3.3.1. 

(3) Creation of program schemata and instances for general 
problem solving steps. Domain-independent knowledge 
about general problem solving methods also fits into 
the knowledge representation structure we have 
devised. Section 1.3.3.3. 

-I--------------- 

(1) For definitions of many of the genetic and computer science 
terms used throughout this proposal, see'Appendix I. 

1 



October 27, 1977 

(4) Domain Specific Critics. Mechanisms for the 
activation of various domain specific strategies when 
certain predefined situations occur during the course 
of experiment design. Section 1.3.3.4. 

(5) Development of a specific planning strategy designed 
to provide high-performance for the class of genetic 
experiments known as discrimination experiments. The 
idea is based on indexing abstracted experimental 
designs to the types of structural features for which 
they have proven useful. Section 1.3.4.' 

Grant Renewal Period (June 1978 - June 1980) 

(6) 

(7) 

(8) 

(9) 

Creating a more comprehensive genetics knowledge base. 
Expanding the knowledge base within the area of DNA 
structural manipulation problems. This work will be 
done mainly by the Stanford Genetics Department. 
Section 2.1. 

Abstracting and Saving Plans. Pecognizing when newly- 
created experiment designs are worth saving and then 
generalizing those plans so they are useful for more 
than the specific problem environment which caused 
their generation. This work will be done in the 
Computer Science Departments of both Stanford and UN&l, 
Section 2.2. 

Making use of the process of hypothesis formation to 
help debug MOLTEN-produced experiment designs. This 
process is especially important in a domain like 
molecular genetics where incomplete knowledge about 
objects and processes is the rule rather than the 
exception. This work will be done in the Stanford 
Computer Science Department. Section 2.3. 

Experiment planning by analogy. KOLGEN provides an 
excellent environment for exploring various typesof 
analogical reasoning. We integrate problem-solving by 
analogy into. the experiment design system as one of 
the possible tools for solving subproblems. This work 
will be done in the UNM Computer Science Department. 
Section 2.4 

(10) Performance evaluation as an integral, part of the 
knowledge representation and acquisition system. We 
view the process of evaluating a system's performance 
and suggesting improvements as an AI problem solving 
task. l%e strategies for this evaluation will h 

2 



October 27, 1977 

stored within the same framework as all other MOLGEN 
planning strategies. This work will done in both the 
Stanford and UNM Computer Science Departments. 
Section 2.5. 

We have designed our effort to facilitate generalization to 
other domains beyond genetics in future research and applications. 

A second motivation behind the proposed research is to develop 
tools that can benefit molecular geneticists, We believe there is 
substantial benefit to be derived from' programs that act as 
"intelligent assistants" to scientists. First of all, the sheer amount 
of detailed knowledge a scientist is expected to know makes it likely 
that good experiments are being missed, Second, we believe that an 
intelligent planning assistant can offer some help in reasoning about 
the consequences of combining experimental facts in many possible ways‘. 

A third motivation for applying artificial intelligence 
techniques to an experimental science like molecular genetics is to 
help us better understand the scientific method. The rigorous detail 
required for creating computer programs that assist in the performance 
of scientific tasks forces us to explicate concepts and procedures much 
more carefully than practicing scientists usually do. 

During the current grant period, the basic KOLGEN system will 
be completed. (See Section 1.2 for details). This system will have 
a modest genetics and problem solving knowledge base, an ability to 
design a subclass of genetics experiments and a representation and 
acquisition system capable of handling all-of the knowledge used by an 
experiment design system. During the renewal period we will expand the 
system's expertise and use the system to explore new problem solving 
capabilities. (Readers can skip to Section 2 for details of work to 
be completed during the renewal period). The basic MOLGEN system will 
provide an excellent framework for exploring more sophisticated 
experiment design activities and problem solving techniques. We have 
found in our analysis of the activity of geneticists that designing 
experiments is intimately coupled with forming hypotheses about the 
failure of the experiment design in the laboratory, then testing the 
hypotheses and , as a result of the tests, gaining new knowledge wtich 
effects the design. The new hypothesis formation component. of MOLGEN 
will extend problem solving capabilities in this direction. Another 
important element in the repertoire of an expert human problem solver 
is the ability to form analogies between problems and to use the 
analogy to solve new problems. Our exploration of analogical reasoning 
within the MOLCXN system will lead to a new problem solving component 
integrated with the rest of the design system. New expertise will come 
in a direct manner from the expansion of the knowledge base by 
geneticists. At the same time we will increase our problem solving 
knowledge base by adding a component which monitors the problem solving 

3 



October 27, 1977 

experience of the system and abstracts new experiment designs for the 
design process. The generalization process developed for this monitor 
will be used by the analogical reasoning component. Our final 
extension to the MOXEN system is the ability to evaluate its own 
performance. Ihis evaluation will aid the development of all of the 
other extensions, 

1.1 Motivations 

The successful initiation of and perseverance with 
interdisciplinary research of this kind can be hindered or aided by 
many intangible factors in the local context, as well as by the 
personal idiosyncrasies of the participants. We need only point to the 
history of the DENDFVLL project as evidence of our proven capability, 
for whatever reasons, to engage in such research in the Stanford 
University environment. It is inevitably true that no one person can 
embrace a professional level of critical insight over all the fields 
represented, but this has been surmounted by dint of hard work on 
mutual communication from all sides. More problematical is the problem 
of communicating our findings to a disparate group of disciplinary 
experts outside, e.g. to computer scientists and to molecular 
geneticists who customarily have had little need of perusing each 
other's disciplines. The best solution is to get these parties engaged 
not just in reading proposals or publications, but in the actual 
manipulation of the working programs - particularly with the help of 
computer networks that link dispersed sites. Even so, an amount of 
technical detail that could well try the patience and skill of the most 
tolerant reviewer is unavoidable if we are to offer a concrete, fair 
picture of the status of our efforts, especially in the formative 
stages. We trust that, as is often true, the maturation of these 
efforts can be accompanied by a simplification in presentation, and 
meanwhile we must appeal to the patience and good will of constructive 
critics. !l%e supporting documents attached to this pro_posal offer a 
sample of our working papers and publications. Further documentation 
on any aspect of the present system is, of course, available. 

1.2 Progress To Date -- 
The following sections describe our progress towards developing 

an experiment planning program. 'Ihe first part discusses a knowledge 
management system. Most of our design and programming effort has been 
in this area. A package of 'programs for the representation and 
acquisition of knowledge is discussed and our progress in using it in 
creating a genetics knowledge base is also described. 

4 



1.2 October 27, 1977 

The next section focuses on' our examination of genetics 
knowledge. It discusses various studies we have made of genetics 
experiments and what we have learned from them. A short section 
describes some work we did in representing the action of the ligase 
enzyme and how this was of benefit to work in Prof. Lederberg's 
laboratory. 

1.2.1 Knowledge Base Research 

The success of MOLGEN as an experiment planner will depend on 
the quality of its knowledge base. Therefore, much of the research 
effort to date has been in the design and implementation of a knowledge 
representation and acquisition system. All of the information relevant 
to the planning process will be an explicit part of the knowledge base. 
'Ihe motivation for this aspect of the design is the necessity to expand 
the program capabilities in a modular fashion and to explain the 
rationale behind the program's planning behavior. We need to represent 
concepts (e.g. enzyme), instances (e.g. EcoRI), relationships among 
concepts, and relationships among instances. In addition, we need to 
represent processes. 'Iwo recent papers [42][3] have delineated 
problems which arise in interpreting a knowledge base when the 
semantics of the representation are not clearly specified. We have 
purposely limited the expressive power of our representations to enable 
us to clearly define their semantics. 

The result of this work is the Unit Package. Although this 
package has been designed in the context of our genetics application, 
the package does not contain any genetics knowledge. At this time one 
other group within the Stanford Heuristic Programming Project, the AGE 
group, is using the package. 

Our knowledge base design has been reported in the literature 
[241 l Other documents relating to its use are included in the 
appendices. Also included is a sample session illustrating the 
acquisition of a DNA structure and a current summary of part of the 
knowledge base dealing with enzymes. Section 1.2.1.1, Section 
1.2.1.2, and Section 1.2.1.3 describe the implemented portions 
of the representation package. Section 1.3.1 discusses some of the 
further developents for the knowledge base that are planned for the 
rest of the current grant period. 

1.2.1.1 The Unit Packaqe: -- 
Research 

Design of the representation 

Backqround and Relation to Other -- 

package (termed the Unit Package) 
was started in November 1976 although most of the programming has been 
done since March 1977. The design of the Unit Package profited from 

5 



1.2 October 27, 1977 

the experience of other efforts e.g. KRL-0 [l], SMALLTALK [20], and 
the work at the MIT AI Lab on frames [27][21]. One important 
difference in perspective between the Unit Package research and many 
other efforts is that it is at once a knowledge acquisition system and 
a knowledge representation system. The knowledge acquisition system is 
in the same spirit as Davis' work on TEIRESIAS [7] where schemata were 
used to guide the acquisition of knowledge. Another distinguishing 
feature of the Unit Package is that it is also used to represent and 
acquire process information, that is, action and strategy knowledge 
(see Section 1.3.3.1). The package performs many other knowledge 

management ,tasks for the system. 

The basic element of our representation is an entity called a 
unit. Units are either "prototypes" or "instances". Prototypes are 
used to represent Woods' intensions [41], Bra&man's concepts [3]. 
That is, a prototype defines a class, that is, the knowledge expected 
for a particular concept in terms of slots with .the appropriate fields 
(e.g. role, value/specification, default). (2) Individuals are defined 
as instances of prototypes. Subclasses can be form4 with a special 
link called generalization/specialization. Concepts can only have one 
generalization and instances only one prototype. Other relationships 
among units can be expressed by the value/specification of a slot or by 
creating an explicit relation unit. 

The knowledge acquisition system is used to acquire both 
prototypes and instances. This system is being used by system builders 
to create the bootstrap network described in the next section and by 
Jerry Feitelson, our genetics research assistant, for defining and 
instantiating knowledge about several families of enzymes. (See 
Appendix II and the supporting documentation for examples of 
knowledge acquisition.) 

Other knowledge base management chores include automatic 
bookkeeping and knowledge integration. The bookkeeping chores simply 
keep a record of all pertinent information about the creation or 
modification of a unit. 

1.2.1.2 
Perspective 

The Bootstrap Knowledl Base and Object-centered -- 

One important aspect of the design of the system is that the 
knowledge base contains knowledge about its own data representations. 
We have provided what we term a "bootstrap knowledge base." It contains 
domain independent knowledge about commonly used data types. When 

------------------- 
(2) The slots in a prototype are similar to Bra&man's DATI'R 

links. A limited version of Brachman's MODALITY link is implemented. 
MODALITY specifies the necessity of the specific DATER in instances. 

6 



1.2 October 27, 1977 

using our knowledge base in a new domain, an artificial intelligence 
researcher would probably start with the bootstrap knowledge base and 
then proceed to create units for the specific knowledge of his task 
area. Both the AGB and genetics knowledge bases have been started in 
this manner. 

The bootstrap knowledge base serves to illustrate our approach 
to extensibility. Most of the bootstrap knowledge base is made up of 
the procedures which capture the knowledge in the system about 
primitive datatypes. 'Ib add a new datatype to our system, one needs to 
provide the knowledge base with procedures for some basic operations -- 
such as editing and printing. Actually, the same approach is used in 
the unit package for defining a new datatype as is used for defining a 
new enzyme. The process of defining new datatypes requires, however, 
an understanding of Interlisp because the primitive processes in the 
system are grounded in that language. New datatypes must be defined 
together with their basic operations and entered into the knowledge 
base. 

The approach used for attaching the basic operations to the 
primitive data types is very similar to SMALLTALK [20] and KPL-0 [l]. 
As far as the knowledge base is concerned, in,order to edit a DNA 
structure, one sends the DNA unit an edit message. Another way of 
saying this is that the proctiure for editing a DNA structure is 
attached to the DNA unit. Thus, indexing of the "edit procedure" is 
via the "DNA object" so that this is an application of the object- 
centered viewpoint introduced in the languages mentioned above. This 
organization makes it easy to add new datatypes to the knowledge base. 

An object-centered viewpoint is used in our system for other 
applications as well. An example of this is the "inspector" idea 
discussed in Section 1.3.3.4 which illustrates the significance of 
object-centered indexing during planning. In that example, particular 
knowledge about related planning situations is associated with the 
genetic object -- "pH". Generally only operations basic to primitive 
data types are represented in LISP code, Other process information is 
expressed as units. Instances of 
with objects. 

1.2.1.3 Considerations 

process units can also be associated 

of Human Bngineering -- 
Because we expect our knowledge base to be maintained by 

geneticists, it has been important to carefully consider the 
interaction expected between a geneticist user and our Unit Package. 
This effort has resulted in the crafting of a package which is 
particularly easy to use. This ease is verified by the acceptance of 
our system by both geneticists and users on the AGE project. 

7 



1.2 October 27, 1977 

&.a part of human engineering has already been mentioned above. 
The system automatically records who has entered or mcdified any of the 
information in the knowledge base. It provides sumimaries of what is in 
the knowledge base and can indicate which areas of the knowledge base 
have been changed recently. (See the attached supporting documentation 
for a slumnary of a recent version of the genetics knowledge base.) 

Another example of this human engineering is the "User Profile" 
maintained in the unit editor. A user's profile contains such 
information as whether he is a programmer, whether he prefers verbose 
printouts, whether he likes to be informed when the-system does things 
automatically for him (i.e. that he has not requested). This 
information helps the system to tailor its interaction with a user. In 
addition, terminal communication is handled via very general routines 
which check for type ahead and allow help information to be provided to 
the user at any point in the dialog. The result of this is that an 
experienced user can have very brief interactions with very little 
prompting from the system. An inexperienced user will be prompted at 
each step of the dialog and may type "?" at any time to get an 
explanation or example of what the program expects. (See the User's 
Guide to Units in the attached supporting documentation.) 

Many of the human engineering parts of the system take 
advantage of the facilities of InterLisp. For example, when a 
programmer is changing some procedures in the knowledge base, he need 
not explicitly request that the changed functions be recompiled. !&is 
part of the updating is performed automatically at the end of a 
session. 

Our final example of human engineering illustrates the fuzzy 
borderline between the technical problems of making the system easy to 
use and some more complicated issues of knowledge base management. 
Recognizing the importance of experimentation in representing 
knowledge, one of the facilities of the unit system is to merge 
knowledge bases. This makes it easy to update various knowledge bases 
when changes are made -- for example when the bootstrap knowledqe base 
is updated. Part of the transfer protocol includes the facility for 
one unit to imply a requirement for another. For example, suppose that 
the bootstrap knowledge base has just been updated so that it has 
knowledge about the representation of an important data structure - say 
"trees". If this is useful in representing knowledge in the AGE 
system, they need only request to transfer the "tree unit" from the 
bootstrap knowledge base. Any other units essential to complete the 
knowledge about "tree representation or tree operations" will be 
transferred automatically at the same time. 

The more difficult aspect of merging knowledge bases concerns 
how the system can determine which units should be transferred when a 
particular unit is transferred. Restated--- how can the system find 

8 



1.2 October 27, 1977 

all of the relevant knowledge about a unit? Our approach to this 
involves a method of inserting knowledge about relevance into the 
knowledge base itself. 

Considerations like those in the previous paragraph are simple 
enough from the implementation point of view and are described in the 
appendices. They are representative of the effort we have taken to 
make the units package easy for a geneticist (or a programmer) to use. 

1.2.2 Studying the Process of Experiment *sign in Molecular -- 
Genetics 

Considerable effort was given during the first fifteen months 
of the MOLLXN grant to the study of the process of designing 
experiments. Attempts were made to determine subsets of the domain 
which would provide realistic target areas for automated experiment 
design and to collect the strategies and domain knowledge used by 
experts for those subsets. Detailed descriptions of the results of 
this investigation are given in the appendices. 

The work included four major efforts: 

1. 

2. 

3. 

4. 

Designing as many rational. experimental plans as 
possible for an experimental problem from Prof. 
Lederberg's laboratory, the determination of the 
presence of poly-A sequences in DNA. (See attached 
supporting documents: ~"!l%e tinbedded Sequence Problem") 

Collecting "skeletal" or abstracted plans for a wide 
variety of structural. elucidation problems. These 
plans are meant to capture the re-usable aspects of an 
experimental plan for use in planning other 
experiments. They are an essential component of an 
approach to planning described in Section 1.3. 

Analyzing in detail the logic and development of a 
single experiment performed in Prof. Lederberg's 
laboratory. Tnis study considers both the knowledge 
which led to the successful experimental design, and 
also the process of hypothesis formation to account 
for experimental failures. (See attached supporting 
documents for a copy of [14]) 

Analyzing a collection of experiments suggested by 
several geneticists as good examples of logically 
produced experimental designs in order to extract the 
knowledge needed for MOLGEN to design the experiments. 

9 



1.2 October 27, 1977 

Our design of the system has been strongly influenced by these 
studies. Pather than give detailed results in the body of this 
proposal, we present a summary of these influences. 

1. 

2. 

3. 

4. 

We will concentrate our initial efforts on experiment 
planning to the subfield of restriction enzyme 
experiments and then expand to applications to plasmid 
and sequencing experiments. 

We will represent genetic objects so that they may be 
viewed from a variety of different perspectives. Our 
studies showed that different perspectives led to 
different experimental algorithms. (See [40] for a 
similar finding in program synthesis,) 

While we are restricting the range of objects and 
processes as indicated in (l), we must represent many 
different types of knowledge about each object. Even 
in a single experiment, a great diversity of -knowledge 
was needed to design the experiment [14]. 

!J!he planning system will be one component of an 
eventual genetics expert. The experimental design 
process is much more event-driven than anticipated. 
The eventual expert system will need a hypothesis 
formation component and techniques to exploit 
serendipity. For examplep results of a particular 
transformation may indicate interesting sidelights 
which could be investigated in the context of the 
current experiment. 

1.2.2.1 Simulating the Process of Emmatic Ligation ,-- _-- -*F-P -.- - ___ ---- 
An attempt was made early in the first year of the current 

grant to simulate the action of enzymatic ligation on DNA structures. 
There were several motivations behind this effort. We wished to test 
our newly developed DNA structural representation and to learn 
something about representing the processes that modify those 
structures. Also, we were presented with an interesting problem where 
we could be of actual use to a laboratory geneticist (Dr. S. D. 
Ehrlich). 

The experiment in question was one in which sticky ended m of 
uniform length was reacted with ligase to join together ends. Each 
ligation could either join two different DNA structures or could 
circularize a single structure. In the former case the new structure 
would still have two sticky ends and the total number of structures in 
the sample (concentration) would be reduced by one. In the latter case 

10 



1.2 October 27, 1977 

the number of structures would remain the same, but one structure would 
be "inactivated" for further ligation. The problem was to predict what 
the total sample population would look like after some portion of the 
original monomeric structures had disappeared. That is, what percent 
of the total structures would be monomeric circles, dimers, dimeric 
circles, and so on. These percentages would be compared with 
laboratory results in order to determine how many different ends types 
were present in the sample. (The more different end types, the greater 
the ratio of circles to linear and shorter structures to longer 
structures). 

The simulation we developed was based on a kinetic theory of 
ligation [ll]. The simulation results correlated remarkably well with 
the actual laboratory experiment when a model with two different end 
types was chosen. This gave additional support to Dr. Ehrlich's 
conclusion that indeed two different structure types had been present. 
The program was then used for the related experiment of maximizing 
inserts of a small gene into a plasmid. The idea was to cut the 
plasmid with the same restriction enzyme that had produced the sticky- 
ended gene, join the two, and then recircularize the structure to 
produce a recombinant plasmid. The problem is that many other 
structures, monomeric circles, long linear concatemers, etc., can 
occur. Tne problem was to determine optimum starting concentrations of 
the two structures and the length of time to carry out the ligating 
process to maximize the desired product. The suggested values given by 
the simulation program were of considerable assistance in carrying out 
the laboratory operation. 

The major significance of this work for future MOLGEN 
developnent (besides giving a working geneticist assistance and 
encouraging his coopration in communicating problem-solving knowledge 
to us) was that this was our first attempt to capture the knowledge 
needed to simulate a genetic process. We made no effort to consider 
environmental side effects like temperature and pH, but the results 
were still quite encouraging. The major problems we discovered were 
twofold and related. First, the simulation program was hard to expand 
to other problems. Adding other relevant information, for example 
stereochemical effects, or about new processes such as cutting 
structures, would involve considerable additional programming. Second, 
all of the knowledge was hidden in the simulation program (written in 
SAIL). The program could offer no explanation of its predicted 
results, nor could the user make interactive changes to its guiding 
theory. These results led to our decision to make all knowlecige, not 
just knowledge about static genetic objects, explicit in our knowledge 
base. A discussion of how this is being accomplished is given in 
Section 1.2.1 and Section 1.3.3. 

11 



1.3 October 27, 1977 

1.3 Plans for the Remainder of this Grant Period .---- --- 

1.3.1 Continuing Knowldqe Base Management Research 

Our progress in developing a knowledge representation system 
for MOLGEN has been discuss& above. Our continuing effort during the 
grant period is divided into (1) filling in a knowledge base with 
entries specific to a specialized subset of molecular genetics, and (2) 
expanding our representational capabilitie s to include knowledge about 
the process of experiment design. 

1.3.2 A Genetics 
Experiments 

Knowledge Base for Restriction EnzTyme __ 

The Units package described above will be used to acquire and 
store the knowledge needed to plan experiments. The initial knowledge 
base will be limited to the facts and heuristics necessary to reason 
about restriction enzyme experiments. This will include: 

1. Units for basic concepts like DXA structure, enzymes, 
and samples. 

2. Units for each individual restriction enzyme. 

3. Units for laboratory techniques which make use of 
restriction enzymes. 

4. Procedures which describe the action of restriction 
enzymes on DNA. 

After the restriction enzyme knowledge has been debugged, 
knowledge about the fields of plasmid technology and 
sequencing DNA will be added. 

1.3.3 Knowledge About Processes and Planning 

The basic planning work in MOLGEN will be divided into two 
major efforts. General domain-independent planning strategies will be 
developed within the units knowledge representation system as part of 
the process of rraking an "AI toolbox." At the same time, work will 
proceed on a specific strategy tailored to provide high-performance for 
discrimination experiments in molecular genetics. The specific 
approach for discrimination experiments is discussed below after the 
discussion of our general approach to process representation and 
planning. 

12 



1.3 

1.3.3.1 Representation of Processes - 

October 27, 1977 

Extending the Unit Package to accommodate the representation of 
processes is the important next step in the development of the 
knowledge base system. We view both simulation (of a laboratory 
technique) and planning operations (e.g. selection of a subgoal) as 
processes. Our approach to the representation of processes has 
previously been discussed [24][36]; the main ideas are reviewed below. 

We want to provide a facility that makes process description 
and debugging as easy as possible. For example, the system will 
provide an appropriate set of primitive operations for the operations 
on DNA models. The geneticists and the computer scientists will create 
prototypes for laboratory steps. Geneticists will then use these 
prototypes as guides during the acquisition of knowledge about 
particular laboratory tools. The same prototype/instance system will 
be used to represent planning operations. 

Many of the processes we want to represent can be grouped into 
classes such that there is a prototypical action for each class. That 
is, the individual processes (e.g. action of EcoRI) can be viewed as 
instantiations of a process concept (e.g. action of restriction 
enzymes) just as individual objects are the extensions of object 
concepts. Many researchers in program synthesis (such as [9]) have 
used a "program schema" to represent a prototypical program. The 
schema is then instantiated by the synthesis 
concrete program. A program schema consists of 
with abstract predicate, function and constant 
specifications, and restrictions on possible 
abstract symbols. 

system to produce a 
a generalized program 

symbols, input/output 
instantiations of the 

This notion of a program schema (we will use the expression 
"process schema" synonymously) can be implemented within the current 
unit representation. The abstract predicate , function, and constant 
symbols are slot nams. The restrictions on possible instantiations 
are specified in the value/ specification field. The abstract function 
symbols may be restricted to be either system primitive functions or 
instantiations of other prqram schemata. I/O variables and 
relationships among them can also be specified via the slot mechanism 
and the "relation" units. Within a rule unit there is a special slot 
which contains the generalized procedure. Thus, a program schema can 
in fact be develom in a modular fashion: first create the simpler, or 
primitive schemata; then decide on the constant, predicate, and 
function symbols need& (i.e. the named component parts in a process 
description); then create the generalized procedure using those symbols 
as the named components. 

Implementation details of rule units are currently being 
examined. While in synthesis programs, the system creates the 

13 



1.3 October 27, 1977 

instantiation from program segments, in the current design of MOLGEN, 
the user creates the instantiation. The acquisition system must be 
able to check instantiations to make certain that the restrictions and 
I/O specifications have been met. 

The use of process schemata and their representation as units 
has implications for planning also. The visibility of process 
components in slots is important so that other processes can examine 
and select them according to the values in the slots. General problems 
of such indexing methods and comparisons of systems which use these 
methods can be found in the literature [8][36]. . 

In many cases it is appropriate to associate the process 
elements of the system with definitions of the objects. This "object- 
centered" viewpoint has been expounded [l] and implemented as 
"attached procedures". Several different applications for attached 
procedures in MOIGEN are given [24]. These attach4 procedures can be 
system primitives or instances of process prototypes. 

1.3.3.2 Representation of States and the Planning Network - -- 
Any system for doing problem solving needs to be able to work 

with representation s of domain worlds (often termed "world states") and 
representations of problem solving states. An example of a world state 
in MOLGEN is a sample which might contain a variety of hypothesized DNA 
structures, enzymes, and other reagents. An example of a problem 
solving state i s a sequence of laboratory steps and world states which 
represent several steps of an experiment. We find it convenient to 
consider a problem solving state as having levels of detail, with 
different kinds of problem solving information on the different levels. 
A description of our approach using such levels is given in [36], 
section V.3. 

Two main ideas have influencd our design. First, the world 
states and planning states are fairly complicated structures. It is 
necessary for a planning program to communicate with its users about 
its current planning state. In particular, it must be able to display 
its progress in an easily understandable form and it must be able to 
integrate suggestions from.the user to alter its course. Rather than 
create separate programs for doing this, we have decided to represent 
the planning and world state knowledge using units in the knowledge 
base. 

The second idea is that the process of problem solving can be 
expressed adequateiy by a small number of basic operations. These 
operations are used repeatedly in the course of solving a complicated 
problem. This is discussed in the next section. 

14 



1.3 October 27, 1977 

1.3.3.3 An Eclectic Perspective on Problem Solvinq -- The AI -- -- ---_^-_I_ --- 
Toolbox -- 

When we study the solution to a problem in an unfamiliar 
domain, the first reaction is to be overwhelmed by the new detail and 
terminology. When one has mastered the terminology, the problem 
solving process can be viewed in better perspective. To be sure, many 
solutions remain brilliant and' surprising. The majority of the 
solutions are easy to follow and we may recognize the solution process 
in the mind of the problem solver, Here he is sketching out some 
goals; now he is selecting an operator: now he is refining a step: now 
he has factored out a subproblem. 

We believe that the process of problem solving can be modelled 
by a small number of standard operations. These operations include 
such things as (1) Sketching out planning islands: (2) Proposing 
subproblems; (3) Testing for mismatch of goal states; (4) Focusing 
attention on part of the problem; (5) Assigning time sequence to steps; 
(6) Selecting amonq competing choices for 
Splitting a problem into cases. 

a given step: and (7) 
Although these have been recognized as 

basic components of strategy, no existing system has integrated this 
breadth of strategy knowledge into a knowledge base. Dershowitz and 
Manna [9] have suggested the use of program schemata to represent 
general problem solving techniques s1uch as Divide and Conquer. These 
program schemata are instantiated by the program synthesis system to 
obtain concrete programs. In our system the geneticist &-d/or 
programer will create the instantiation. A major component of this 
research will be in the construction of such program schemata and . . instantlat1ons. The package created will be termed the "AI toolbox". 
The creation of a library of schemata has been suggested by Gerhart 
[19J. The package will be built and tested in the context of a small 
number of genetic experiments. Computer science experiments with the 
package will include a measure of its performance and utility for 
expressing appropriate strattyy for experiments. 

Of course, having a number of basic tools does not guarantee 
that a program will use them correctly. Competence in problem solving 
in the domain requires that the expert system know where and when to 
apply the standard methods. Two factors are of importance here. (1) 
some tools govern the use of other tools. For example, "Focus 
processes" will determine where to concentrate effort in a problem and 
indirectly control the selection of strategies. (2) The specific 
knowledge for using a tool is precisely the-type of information which 
is left unspecified in the prototype and which must be supplied when 
concrete instances are acquired for the knowledge base. 

The AI toolbox is discussed further in [36] in section V.4. 

15 



1.3 October 27, 1977 

1.3.3.4 Simplifying Process Specifications -- by Rcmovinq 
Exceotions 

Planning can be plagued by exceptional cases, If high level 
planning processes are burdened with the detail of the special cases, 
they can become cumbersome to update and debug. We are developing an 
object-centered approach, termed inspectors, for distributing the 
information about special cases throughout the knowledge base. This 
should help keep the planning processes clear and concise and also 
provide localized packets of information about the exceptions. 

The basic ideas of this process of removing exceptions can be 
illustrated by an example of a "selection process" in designing an 
experiment. The operation of selecting among available laboratory 
steps is a recurring operation during experiment design. The following 
bear on this process: 

1. 

2. 

3. 

4. 

5. 

6. 

The experimental goals -- e.g. to extract a section of 
a molecule. 

World State specification -- a description of the 
laboratory sample, e.g. DNA structures. 

The selection criteria -- e.g. availability, 
sensitivity, or functionality of the laboratory 
technique. 

Verification criteria -- test for deciding after a 
simulation of the selected laboratory step whether the 
essential goals have been satisfied, 

Failure instructions -- what to do if the chosen 
laboratory technique does not satisfy the goals. 

Laboratory step specifications -- a list of the 
potentially applicable laboratory tools and their 
descriptions. 

Our approach to managing the information about a selection 
process is first to identify the general information and then to 
consider the alternatives for placing information about the special 
cases. For example, section V.4.4 of [36] considers the selection of 
an enzyme to make cuts around a region in a D>JA molecule so that it may 
be extracted. The general information in this case is that the main 
determinants of selection are enzyme availability and information about 
where it will make ,cuts. Special case information includes 
modifications on this basic idea according to unusual variations in the 
structure of the molecule -- e.g. "AT-rich regions", "hairpin loops", 
etc. It also includes information specific to the laboratory steps 
being selected --.e.g. nuclease contamination in an enzyme. 

16 



1.3 October 27, 1977 

Interactions between goals often arise in the special cases 
(3). When action was taken to satisfy the preconditions of the enzyme 
(in this case, pH was changed), a side effect resulting from 
interaction with an unusual molecular feature interfered with the 
action of the enzyme. Specific advice about failures of this kind can 
be associated with the "pH inspector" -- To avoid conflicts of this 
kind an enzyme should be used at a suboptimal PH. Inspectors may be 
viewed as domain specific versions of planning critics as developed by 
Sussman [37] and Sacerdoti 1321. 

Generally there are many tradeoffs involv&d in deciding where 
to locate the information about special cases. The example above and 
the tradeoffs are described in detail in section V.4.4 of [36]. 

1.3.3.5 Further Aspects of Knowledge Base Management --- 
One further area of work in knowledge base management that we 

will be pursuing is in developing a number of modest aids for a user 
for keeping track of a growing and evolving knowledge base. As 
discussed previously, we have already developed some facilities for 
automatic documentation of the knowledge base. We will be designing 
aids for a user in tracking down unexpected conflicts. For example, if 
two geneticists sharing a knowledge bas e have a somewhat different view 
of some aspect of the domain, one may make changes effecting the 
other's area. In the. event of a failure, it would be useful in many 
occasions to get a summary of recent changes to the knowledge base. 
When a change is contemplated to the definition of some class of 
enzymes, it would be a simple matter to locate all of the rules which 
mention those enzymes. These rather simple aids are expected to be 
useful when fairly extensive changes to the knowledge base are 
contemplated because they will assist the user in being thorough about 
making his changes. 

1.3.4 A Method for Designing Discrimination Experiments - 
One of the applications of the genetics knowledge base will be 

the building of a high prformance system for designing a variety of 
discrimination/analysis' type experiments. The goal in these 
experiments is to learn something about a given sample. of DNA 
structures. For example, are any poly A regions present, or do the 
structures carry tetracycline resistance? The basic method used for 
the experiment design system will be means-ends analysis combined with 
hierarchical planning as follows: 

-------------------- 
(3) See Section 111.2.5 of [36] for a discussion of recent 

techniques for handling interactions between goals. 

17 



October 27, 1977 1.3 

1. 

2. 

3. 

4. 

5. 

6. 

A model structure containing the hypothesized 
feature(s) will be compared with a structure 
representing generalized DNA of the same type in order 
to ascertain exact differences. 

These differences will be ordered and one selected as 
a basis for initial planning. 

An experimental' strategy, ranging from very specific 
(e.g. if a bubble is present then denature and use EM) 
to very general (e.g. label the feature and then look 
-for the label) will be selected from a library of such 
"skeletal plans," using the difference selected. 

The skeletal plan will be adapted to the specific 
problem environment, with hierarchical planning 
proceeding as deeply or shallowly as is desired by the 
system user. 

The completed design will be tested in a forward 
direction for completeness and consistency by an 
evaluation system. 

If a successful design cannot be found from the 
feature selected in (2), then either a new feature 
will be selected from the difference list,, or a 
generalization selected from a tree of structural 
features will be used. For example, if the selected 
feature was the exact base sequence ATI'G!Z, a 
generalization might be made to&"known base sequence." 

The following major components are needed for this experiment 
design method: 

1. A problem analysis preprocessor which recognizes key 
features in the nucleic acid structures, nicks, gaps, 
hairpins and the like, and then compares these 
structural features to find major differences between 
candidates in a discrimination experiment. This 
program will organize features into a hierarchy of 
imprtance for experiment design using a rule-based 
system for analysis and classification. 

2. A tree structure for ordering structural features and 
providing links between features and the classes to 
which they belong. The links will pint upward as 
generality links to a more general class or downward 
as specificity links to a more specific one. The 
highest links will be to the complete class of 

18 



1.3 October 27, 1977 

structural features, the lowest ones to individual 
specific features. Intermediate levels will consist 
of important subclasses, e.g. "poly base sequences" 
which would point downward to "poly A," "poly T," 
"ply G," and "poly C," and upward to "AT/Cc ratio", 
which would itself point upward to known base 
sequences." This tree will provide entry into genetic 
strateqies classified by the features to which they 
specifically pertain. Failure to find knowledge about 
what to do with a specific feature will cause the 
system to search for knowledge about the subclass of 
features immediately above the specific feature in the 
tree. 

3.’ A cohesive system for hierarchical planning in the 
domain of molecular genetics--selecting strategies as 
described above and refining them downward to specific 
laboratory tools. This of course involves the usual 
need for error recovery and backtracking facilities. 

4. A system for evaluating completed designs at any level 
of generality to be sure the plan as a whole "fits" 
togethers, i.e. a forward-working system for plan 
evaluation. 

These components will be integrated into the basic MOMEN 
representations framework of the Units system described above. The 
rules describing the problem analysis preprocessor will be individual 
units, as will the descriptions of structural features which combine to 
form the tree structure of the feature hierarchy. Individual dynamic 
planning states will be represented as units within the %LG!ZN system. 

After the experiment design system becomes operational for 
discrimination/analysis type experiments, we intend to adapt it to 
experiment-planning for synthesis experiments where the goal is to 
produce som, Q desired DNA structure from available starting materials. 

1.4 An Example of the Genetic Utility of Automated 
Experiment Desi+i 

- -- - 
-- 

A good way to illustrate the potential utility of computer 
assistance in experiment design is to show how some recently published 
work from another la'boratory might have been represented in a PIOXEN 
formulation, albeit human intelligence was the instrument. The work in 
question achieved the cloning of the gene for rat insulin in a 
bacterial plasmid vector [38]. The major goal of the experiment was 
the transfer of a gene coding for insulin from the rat to the common 

19 



1.4 October 27, 1977 

intestinal bacterium, E. coli. An important subtask of the experiment 
was: given samples of twodifferent linear DNA structures with "sticky" 
ends, produce a circular structure containing one molecule of each. 
'Ihe difficulty of this problem lies in the number of competing 
processes. Both structures can self-circularize, and many different 
linear and circular monomers can be produced. See Appendix III for 
further details. 

Previous attempts to cope with the problem were based the 
kinetic theory of ligation [ll]. Using a model of the process based on 
concentration and molecular weight of the structures, one varied 
various experimental parameters to maximize the amount of the desired 
product. The new idea of the article was based on a different 
strategy--try to eliminate competing processes. This led to a method 
for modifying the sticky ends of the two structures so that they could 
no longer self-circularize. The particular method chosen was a simple 
biochemical step. The solution was retrospectively self-evident, but 
in fact, it was missed by many geneticists who had previously examined 
the problem (or related others), An intelligent experiment design 
system with the above mentioned heuristic probably would not have 
overlooked the solution. 

2 Research Plans --- -- 
The bulk of this application comprises details of research 

strategies for the first two years of the renewal period. It is of 
course more difficult to forecast over longer periods: indeed there is 
every likelihood that unforeseen difficulties and opportunities will 
intervene .to offer changes of perspective. Bowever, enough progress 
may have been made to enable us to IIK)V~ from the initial stepping 
stones, and our current plan for years 3 and 4 is as follows: 

We will by then have invested substantial effort (mainly 
through the cooperation of investigators with direct support for 
molecular genetics research) in building and maintaining the knowledge 
base in the specified domain. We believe that this investment should 
be exploited before substantial further efforts are made to expand the 
domain -- e.g. in more biological aspects of genetics -- although a few 
easy opportunities will surely present themselves. Instead our 
emphasis will be on the evolution of PIOIXEfi to a hypothesis-oriented 
system (like DENDIIAL). Typical questions at that level would be: from 
the data given, what are plausible hypotheses for the structure of a 
sample of DNA; as well as , what experimental steps should be pursued to 
verify the hypothesis. Intermediate steps have already been mentioned: 
the elaboration of hypotheses in the course of debugging, and the 
extension of MOJXEN from a sharp binary discrimination (between two 

20 



October 27, 1977 

stated alternatives) to.a corroborative mode (a given hypothesis versus 
all plausible alternatives). 

This effort will require a good deal of work on the planning 
components and on rules of plausible induction, and relatively little 
on the knowledge base of molecular genetics per se. For that reason it 
should have the greater value for extensions to other domains. 

2.1 Buildin and Maintaining- the Genetics Knowledge Base -- 

One important building block for MOLGEN's success is the 
creation and updating of a base of knowledge about genetics. This 
provides both a useful reference source for the user planning his own 
experiments, and a body of core data on which automated experiment 
planning strategies can be tested and evaluated. 

The knowledge acquisition and representation ideas have been 
delineated in detail previously. This section describes. advantages of 
the resources available here to support this work. 

The strength of the Stanford community of biologists, 
biochemists, and geneticists offers a unique opportunity for 
collaboration in building a substantial body of knowledge about on- 
going research projects. Many of these projects may prove to be 
suitable sub-domains for initial developer& of the know].edge base, and 
may provide test domains for work on problems of knorlledge acquisition 
and knowledge base management. They offer the added advantages of 
insuring that this work i s solidly grounded in real-world experiments.' 

Updating and checking the knowledge base with respect to the 
information obtained from our collaborators will be the responsibility 
of the graduate student and ~st-doctoral fellow in genetics. On 
oppornunistic occasions they will also experimentally validate those 
experiment plans generated by the system which are relevant to current 
work in the lab. This has already been done in the case of ligation 
kinetics, where theoretical predictions of plasmid self-circularization 
were compared to electron-microscopic empirical tests (Section 
1.2.2.1). 

One useful side-effect of this process that we anticipate is 
that the process of formalizing knowledge abcut the domain may help to 
organize what is currently an informal body oE knowledge, and in doing 
so may even uncover gaps in our current store of knowledge about the 
field. 

21 



2.2 October 27, 1977 

2.2 Recogniz- a$ Abstracting and Savinq Successful Plans -- 

As noted above, our efforts to create an experiment-design 
system center around the concept of a large knowledge base containing 
task-specific information. One approach to augmenting this knowledge 
base is via interactive knowledge acquisition as discussed in Section 
1.2.1.3. A second form of knowledge-base improvement is based on 
giving the system the ability to save successful experiment designs it 
has generat&. This involves two major functions: recognizing when a 
plan is worth saving, and abstracting a plan so that it is applicable 
to a wider range of problems than just the specific one which prompted 
its creation. 

For example , consider the design MODSEN might produce for the 
problem of ligating two genes. An initial attempt would be made to 
produce "sticky" ends by cutting both genes with a single restriction 
enzyme. Suppose, however, that no restriction enzyme which satisfied 
this criteria could be found. One possible solution would be to cut 
the DNA near one gene with restriction enzyme A, and near the other 
with a different restriction enzyme B, then join the two segments by 
means of a small piece of artificially created DNA which had been cut 
on one end by A and the other by B. This general idea -- the concept 
of a "molecular adapter" [35] -- is very useful for problems of this 
sort. While recognizing and abstracting the relevant ideas from the 
specific experiment design above is difficult, the ability to do this 
would be an important form of knowledge base augmentation. 

Automating the function of recognizing when a plan should be 
saved will rely on several interrelated factors: 

1. Was the plan a "good" one, i.e. does it solve a problem 
with reasonable efficiency, cost, safety, etc.? This measure of 
'goodness" will be difficult for the system to judge alone. The system 
will rank alternate plans according to its heuristics which involve 
these factors, but an absolute measure of plan quality will be a very 
difficult measure. Until the knowledge base includes adequate metrics 
for the "goodness" of plans in a variety of subfields, we imagine this 
judgment will be mostly up to the user. 

2. If the plan solves a problem for which other plans already 
exist in the knowledge base, is the plan a significant improvement? 
Making this judgment involves use of the same "goodness" metrics 
discussed above as well as an analysis of why the new plan was not 
simply a copy of the old. If the only difference between the two plans 
is that the new one takes account of some detail of the environment for 
a specific problem, then it probably isn't worth saving. Again, we 
imagine this judgment will, at least initially, be mostly up to the 
user. 

22 



2.2 October 27, 1977 

3. is the cost of saving the plan 'less than the cost of 
regenerating it each time the same problem arises? Empirical criteria 
applicable to making the tradeoff decision might include CPU time spent 
in generating the plan, and , if the plan evolved directly from a 
previously saved one, the number of differences between the two plans. 
Another important measure is some judgment about how often the plan 
will be useful in the future. The more generally useful a plan, the 
mOre important it is to keep it around. 

4. Can the plan be abstracted to more general purposes? In 
the example given above, this would involve recognizing that the 
concept of a "molecular adapter" would be useful any time the goal was 
to join two pieces of DNA which did not have convenient restriction 
sites in common. 

The problem of abstracting a plan that has been selected for 
saving has been considered before, in the robot planning domain, in the 
work on frJCMP3 in the STRIPS system 1151. STRIPS generalized 
successful plans in the following manner. Plans had variables which 
were bound to objects in the robot world. The idea was to "unbind" 
these variables as much as possible, with certain constraints imposed 
by the nature of the particular plan. For example, if one step of a 
plan told the robot to go to a block and the next step said pick up a 
block, the block in these two steps must be the same one. Initial 
references to specific doors, blocks, rooms, etc. were generalized to 
"any door," "any block," "any room,", etc., but took into account 
constraints of the sort noted above. 

We will begin by employing much the same generalization 
process. For the example plan given above, the specific restriction 
enzymes could be generalized to any two distinct restriction enzymes, 
and the two genes to any two DNA sequences lacking a common restriction 
site. Ihis generalization process should be a natural consequence of 
the hierarchical nature of our knowledge base. The taxonomical 
classification of DNA structural features discussed above (Section 
1.3.4) could be used to generalize plan utility--e.g. if a plan solves 
a problem for nicks, maybe it can be generalized to solving that 
problem for the tiediately more general parent of nicks, DNA 
excisions. A plan which was useful for recognizing a specific base 
sequence might be generalized to one which was useful for all "known 
base sequences." The generalization of variables within a plan will be 
done by moving up generality links (see Section 1.2.1.1) in the 
knowledge base. A particular exonuclease could be parameterized to 
mean any exonuclease--the parent of all specific exonucleases in the 
knowledge base. 

Cne difficulty lies in knowing how far it is possible to go up 
the generality links in the knowledge base before losing plan utility. 
A specific enzyme could be unbound to refer to "any enzyme," but that 

23 



2.2 October 27, 1977 

would yield a plan which said "pick any enzyme", and would probably be 
far too general, The problem lies in detecting the important (i.e. 
important to this particular plan) features of each object used in the 
plan, and trying to retain those features while generalizing out all 
"irrelevant details." In the plan discussed above, the important 
feature of the chosen restriction enzymes is that they cut at specific 
sites, not that they were derived from some particular organism or that 
they operate optimally at a certain temperature. Note that such 
information (the degree of reievance of the features) will be available 
from the hierarchical planning phase, since it will have been used to 
choose among competing laboratory "tools". In this case, for example, 
restriction enzymes were chosen because they cut at specific sites. 
So, in unbinding the notion of a particular restriction enzyme, if the 
knowledge of the importance of specificity is maintained, progress up 
the generality links will end at "restriction enzyme." 

2.2.1 5 Casebook of Unsolved Problems - ---- 
A related area of investigation -- recognizing novel 

combinations of laboratory techniques -- is based on the observation 
that new tools are continuously being developed. Sometimes a 
particularly useful combination of tools is available.for quite some 
time before it is recognized as such, as in the use of alkaline 
phosphatase to inhibit self-ligation mentioned in Section 1.4. 

One approach for doing this is to keep on file a casebook of 
important or unsolved genetic problems. Periodically as new laboratory 
techniques and planning strategies are added to the knowledge base, we 
will run the planning program on the test cases. 

The process which we would like to model is embodied in the 
situation where a scientist, after hearing of a new laboratory 
technique, recognizes a laboratory problem for which the technique 
could be profitably applied. Thus, the first step of the process is to 
select a problem (from the casebook) after being presented with a new 
technique. Then the existing planning methods in the system would be 
applied on the problem again with the new laboratory technique encoded 
in the knowledge base. The next phase is decidi.ng whether a new 
solution using the new technique offers any advantage over previous 
solutions. This would make use of the bVork described in Section 2.2 
for abstracting and evaluating plans. 

In summary, this process will make use of other developments in 
the MOLGEN project for applying newly discovered techniques and for 
evaluating the plans produced. These methods will be applied to form a 
discovery proces s by augmenting them with a casebook of experiments and 
a Selection process for picking experiments. 

24 



2.3 October 27, 1977 

2.3 
Formation 

Understanding Experimental discrepancies 2 shesis -- 

Plans for molecular genetics experiments have something in 
common with computer programs, summer vacation trips, and almast any 
kind of plan devised -- they don't always work. Although published 
reports about experiments usually say little about the techniques which 
failed, our analysis of the actual development of experiments has shown 
us that debugging is an essential and integral part of successful 
laboratory experimentation [14]. 

Pioneering work in the debugging of computer programs [37] used 
a process of program development and correction using a knowledge base 
about bugs, Sussman has advocated creating a rough version of a 
program on a first pass followed by local corrections by a gallery of 
critics. In Sussman's work, the ignoring of detail during the first 
pass is a source of power for the approach. In experiment debugging, 
we find an additional reason for attending to details during a second 
pass -- the knowledge necessary for deciding which of the details are 
in difficulty i s not available at the time the experiment is designed. 
For example, many assumptions about the input samples are made when the 
experiment is designed and the validity of these assumptions cannot 
practically be tested until the experiment is performed. 

Section 2.3.1 describes several distinct sources of error in 
experiment design. Section 2.3.4 describes a number of research 
issues. 

2.3.1 Sources of T?A.IJ~~ 

The complexity of most laboratory techniques is such that there 
are many ways for an experiment to go awry. The following diagram will 
be used to categorize the sources of bugs. 

25 


